Buròcrates, Administradors (Semantic MediaWiki), Curadors (Semantic MediaWiki), Editors (Semantic MediaWiki), Administradors
10.883
modificacions
| Línia 565: | Línia 565: | ||
#Quan una variable és causa de l'altra, o podria ser-ho. Per exemple el fet que estar solter provoca que s'estigui més prim. Hi ha dues mesures clàssiques en epidemiologia que no vé malament conèixer: | #Quan una variable és causa de l'altra, o podria ser-ho. Per exemple el fet que estar solter provoca que s'estigui més prim. Hi ha dues mesures clàssiques en epidemiologia que no vé malament conèixer: | ||
##La '''odds ratio''' [http://www.traba.org/wikitraba/index.php/Imatge:SPSSf31.JPG (Figura 31)], que vé a ser (encara que no ho és exactament) quantes vegades més risc hi ha de malaltia en un grup que en un altre. Per exemple podriem dir que els fumadors tenen 3 cops més risc de fer un infart que els no fumadors (''odds ratio'' de 3). En el nostre cas, la ''odds'' ratio de 13,6 vol dir que els solters (serien els fumadors) tenen 13,6 vegades més ''risc'' d'estar prims (serie l'equivalent a fer un infart) que els gordos (els no fumadors). A la ''odds ratio'' li podem donar un interval de confiança (que ens dóna l'SPSS), que si no passa per l'1 podem dir que és estadísticament significatiu (cuidao que aquí és per 1, no per 0!). En aquest veieu que l'interval no passa per 1, el que vol dir que '''els solters tenen més risc d'estar prims que els casats''' | ##La '''odds ratio''' [http://www.traba.org/wikitraba/index.php/Imatge:SPSSf31.JPG (Figura 31)], que vé a ser (encara que no ho és exactament) quantes vegades més risc hi ha de malaltia en un grup que en un altre. Per exemple podriem dir que els fumadors tenen 3 cops més risc de fer un infart que els no fumadors (''odds ratio'' de 3). En el nostre cas, la ''odds'' ratio de 13,6 vol dir que els solters (serien els fumadors) tenen 13,6 vegades més ''risc'' d'estar prims (serie l'equivalent a fer un infart) que els gordos (els no fumadors). A la ''odds ratio'' li podem donar un interval de confiança (que ens dóna l'SPSS), que si no passa per l'1 podem dir que és estadísticament significatiu (cuidao que aquí és per 1, no per 0!). En aquest veieu que l'interval no passa per 1, el que vol dir que '''els solters tenen més risc d'estar prims que els casats''', i aquesta diferència (que ja haviem vist a la taula 2x2) és estadísticament significativa. | ||
##El '''risc relatiu''' (que l'SPSS el pot fer però es lia), s'interpreta igual que la ''odds ratio'', i en aquest cas sí que és exactament quantes vegades més de risc tenen els exposats (els solters) que els no exposats (els casats) d'estar prims (la ''malaltia'' del nostre estudi) | ##El '''risc relatiu''' (que l'SPSS el pot fer però es lia), s'interpreta igual que la ''odds ratio'', i en aquest cas sí que és exactament quantes vegades més de risc tenen els exposats (els solters) que els no exposats (els casats) d'estar prims (la ''malaltia'' del nostre estudi) | ||
#'''Diferència de proporcions'''. Una altra forma de valorar la magnitud de l'efecte, si no hi ha una variable que pugui ser la causa de l'altra, sinó que està al mateix nivell com per exemple les variables binàries portar sabates grogues si/no i portar camises liles si / no (els dos fets es poden associar, però un no causa l'altre ni a la inversa). En aquest cas no es sol fer una ''odds ratio'' o un risc relatiu, sinó la diferència entre les dues proporcions, junt amb el seu interval de confiança. Problema: l'SPSS no ho fa. Si aquest interval no passa per 0, es pot dir que l'associació entre portar sabates grogues i portar camises liles és estadísticament significativa (cuidao que aquí és per 0, no per 1!) | #'''Diferència de proporcions'''. Una altra forma de valorar la magnitud de l'efecte, si no hi ha una variable que pugui ser la causa de l'altra, sinó que està al mateix nivell com per exemple les variables binàries portar sabates grogues si/no i portar camises liles si / no (els dos fets es poden associar, però un no causa l'altre ni a la inversa). En aquest cas no es sol fer una ''odds ratio'' o un risc relatiu, sinó la diferència entre les dues proporcions, junt amb el seu interval de confiança. Problema: l'SPSS no ho fa. Si aquest interval no passa per 0, es pot dir que l'associació entre portar sabates grogues i portar camises liles és estadísticament significativa (cuidao que aquí és per 0, no per 1!) | ||