
Simple Generation of R packages under
Windows

The process of building packages is described in the manual “Writing R extensions”
by Friedrich Leisch, which can be downloaded from CRAN.
Additionally there are important descriptions in the file readme.packages, which can
be found directly under R\rw1081.

The following description is for building simple packages without C or Fortran code
under Windows versions 2000 or XP and the R version 1.8.1.

Shortcut

� Clean the R workspace

> rm (list = ls())

� Put the source code into the R workspace

� Create the package source directory ‘pkgname’ using the function

package.skeleton:

> package.skeleton (“pkgname”, path=
”U:/target.directory”)

� Edit its Description file and its documentation files (.Rd) in the man-subdirectory

� Put the edited package source directory into R\rw1081\src\library

� Run under DOS:

cd C:\R\rw1081\src\gnuwin32
make pkg-pkgname

the package ‘pkgname’ is built and installed in R\rw1081\library

� check the package running
 make pkgcheck-pkgname

under the gnuwin32 directory in DOS.

� eliminate possible mistakes in the source directory and run ‘make-pkgname’ and
‘make pkgcheck-pkgname’ again.

� build a zip file from the new package file ‘pkgname’ in R\rw1081\library.

1. Creating the source structure of the package

1.1 Clean the workspace

> rm (list = ls())

This will remove all objects from the search-list which were used in the current R
session or saved in an earlier session. This is recommended for more complex R
packages.

1.2 Package.skeleton ()

Put all the objects wanted in the package into the R workspace, for example by using
copy and paste from txt-files. Data objects in the workspace will also be packaged.

The function package.skeleton () creates a directory containing the basic structure of
an R package:

 README with a short description of the following steps for creating a
 package

 the DESCRIPTION file of the package

 the ‘man’ subdirectory, containing a help file (.Rd) for each object

 the ‘R’ subdirectory with the code, each function in a separate R file

 the ‘data’ subdirectory containing the datasets as Rda files

 the ‘src’ folder for Fortran Code, …….

the function package.skeleton () has the arguments:

name: directory name for your package

 list: vector of names of R objects to put in the package

environment: if 'list' is omitted, the contents of this environment are
packaged

 path: path to put the package directories in

 force: If 'FALSE' will not overwrite an existing directory

If the work space was cleaned as described above, package.skeleton () can be used
like:

> package.skeleton (“name.of.directory”, path=
”U:/target.directory”)

If only a certain number of R objects in the workspace shall be packaged, these can be
specified in the list statement as:

> package.skeleton (“name.of.directory”, path=
”U:/target.directory”, list=c("function1", "dataset 1",
"foo"))

After this, the target directory will contain the new directory with all the files needed
for the package. Now you can start with description of the package, documentation of
the single functions, data sets, organizing the help pages by filling the forms
contained in the directory. The Rd-files can be opened for example with Wordpad.

1.3 Editing the DESCRIPTION file

The DESCRIPTION file has to contain basic information about package name,
version, license, author, function in the following format:

Package: param
Version: 1.0
Title: Tools for Inference on Ratio of Means
Author: Frank Schaarschmidt
Description: For two samples of independent, contin uous, Gaussian
 distributed data with equal variances. Sasabuchi T est and the
 Fieller Confidence interval can be calculated for Inference,
 non-inferiority and equivalence. Approximate sampl e size for
 Sasabuchitest can be calculated for one-sided infe rence, non-
inferiority and equivalence.
Maintainer: Frank Schaarschmidt <f.schaarschmidt@we b.de>
License: GPL

Continuing lines have to start with tab or space. There are some additional, non-
optional statements possible. The optional items of the DESCRIPTION file are
checked in the procedure of package building. Take care that the package name in the
DESCRIPTION file is the same as the directory where the package is stored in.
Take care, that the package name in the DESCRIPTION file and the later package
name in the building process is the same.

1.4 Editing Rd files

The ‘man’ subdirectory contains a documentation file (Rd) for each packaged object.
The Rd file for a function contains the mandatory items ‘name’, ‘alias’, ‘title’,
‘description’, ‘usage’ in the header and ‘keyword’ in the footer, and further optional
items as ‘arguments’, ‘value’, ‘details’, ‘references’, ‘seealso’, ‘examples’ in the body
of the file.

\name{} gives the name of the help-file

Under alias you can put names of all objects you want to document in the actual file:

\alias{foo}
\alias{foo.default}
\alias{foo.formula}
...

By filling the { }-brackets of the items

\title{}
\description{}
\usage{}
\arguments{}
\value{}
\details{}
\references{}
\seealso{}
\examples{}
a help page of the known structure is created.

The last item \keyword{} has to contain at least one of the standard keywords listed in
the file R_HOME\doc\KEYWORDS.db.
The Statistics-part of the file KEYWORDS:

Statistics

 datagen & Functions for generating data sets
 distribution & Probability Distributions and Rando m Numbers
 univar & simple univariate statistics [!= S]
 htest & Statistical Inference
 models & Statistical Models
 & regression& Regression
 & &nonlinear& Non-linear Regression (only?)
 robust & Robust/Resistant Techniques
 design & Designed Experiments
 multivariate & Multivariate Techniques
 ts & Time Series
 survival & Survival Analysis
 nonparametric & Nonparametric Statistics [w/o 'smo oth']
 smooth & Curve (and Surface) Smoothing
 & loess & Loess Objects
 cluster & Clustering
 tree & Regression and Classification Trees
 survey & Complex survey samples

Further keywords can be added, which allow to find function names using the R
command help.search (“ “). Only one keyword per line is allowed:

\keyword{ htest }
\keyword{ sample.size }

Help pages for data sets follow a similar structure, containing the items ‘name’,
‘alias’, ‘docType’, ‘title’, ‘description’, ‘usage’, ‘format’, ‘source’, ‘examples’ and
‘keyword’ where ‘doctype’ is already given as {data} and ‘keyword’ as {datasets}.

1.5 Adding single objects to a package source

If single objects like data sets containing examples shall be added to an existing
source structure, the objects themselves and their Rd files have to be saved in the
appropriate formats and placed into the appropriate subdirectory.

Saving of data sets can be done by the function save (). The names of the objects to be
saved are given as the first argument. In the argument ‘file’ specify the directory
where the objects shall be saved.
For example a data.frame ‘rats’ is saved as rda-file by

> save (rats, file=”C:\R\rw1081\package\data\rats.r da”)

R code can be saved using the function dump(), for example to save a function named
‘fie.I’ as R file:

> dump ("fie.I", file="U:/R/fie.I.R")

To build documentation files for single objects, the function prompt () can be used. It
creates an appropriate Rd file for the specified object. In the argument ‘filename’ the
directory and filename can be specified, where the Rd file shall be saved.
For example:

> prompt(rat.weight, filename="C:/R/rat.weight.rd")

2. Building the package

2.1 Software

For building packages from source code, some additional tools need to be installed:

� A package of Unix-tools can be downloaded as zip-file from:

http://www.stats.ox.ac.uk/pub/Rtools/tools.zip
or

http://www.murdoch-sutherland.com/Rtools/tools.zip

� Also needed is a current version of Perl for Windows. It can be downloaded from:

http://activestate.com/Products/ActivePerl/

The current links for download of important tools can be found under Documentation
following ‘FAQs �R Windows FAQ �3 Packages�3.1 Can I install packages…’
on a CRAN website, for example http://cran.at.r-project.org/

For transferring packages as zip-files, for example fil.zip can be used.

2.2 Installation of the additional tools

Both, the folder with the extracted Unix-tools and Perl should be installed at the same
drive at the computer, most easily directly on C:\. Take care that all the paths
including the path of R do not contain any spaces.
Then the path has to be set via the way Start � Einstellungen � Systemsteuerung �
System � Erweitert � Umgebungsvariablen � Systemvariablen. There you can find
the variable PATH.
Put

C:\…..\folderwithtools;C:\…\Perl\bin;
in the beginning of the path, before the settings of Windows.

Further remarks on possible difficulties on installation of the tools can be found in the
file readme.packages. If the package contains C Code, the path to the additionally
needed C-compiler should appear in the second position and the path to Perl in the
third position.(For details see the file readme.packages in R\rw1081)

2.3 Creating the package

The directory ‘pkgname’ which was created using package.skeleton () and later on
edited by you, should then be placed into the directory R\rw1081\src\library.

The next step has to be done under DOS, for example in the Command Prompt under
Start � Programme � Accessories. Giving the commands

 cd C:\R\rw1081\src\gnuwin32

make pkg-pkgname

will create the package and the helpfiles in a new directory called pkgname in the
R\rw1081\library, where also the installed standard packages can be found.
This will contain additional files and subdirectories for the help and help.search-
functions, INDEX and CONTENTS,…

This package can be used after loading via the R command library(pkgname).

2.4 Checking the package

In this step the package can be checked for mistakes in the documentation files as
missing documentations for objects, syntax errors, incomplete or missing items in the
Rd files, differences between the objects and their Rd files. Moreover, the R code is
checked for syntax errors and whether methods have the same arguments as their
generic functions. The examples given in the help files are run. For details see the
manual ‘Writing R extensions’.
Checking can be done under DOS giving the commands

 cd C:\R\rw1081\src\gnuwin32
 make pkgcheck-pkgname

This is doing the checks and gives error messages. Additionally, a folder ‘check’ is
created in the source directory of the package (in \rw1081\src\library) containing files
of the error messages.
If there were error messages, the mistakes can be corrected in the original structure
and the building procedure can be done again.

2.5 Transfer of packages

To transfer packages to other computers or to CRAN they can be converted into zip-
format. If for example filzip 3.0 is installed, this can be done easily by using the right
mouse button, then choosing ‘filzip’ and ‘Add to “pkgname”’. This will build a zip-
file in R\rw1081\library containing the package directory. This can be transferred to
other computers.

The zip-file can be installed in R via choosing ‘Packages’ � ‘Install package(s) from
local zip files…’ and then browse to the place where the zip file is located and open it.
This will install its content in R\rw1081\library. Then it can be loaded as usual with
the R command library (pkgname).

